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Abstract. Expressions for zeroth-, second- and fourth-frequency sum rules of energy current 
density correlation function have been derived. These exact expressions involve static 
correlationfunctionsof up to five particles. Becauseof the non-availability of any information 
about triplet and higher-particle correlation functions, we use a low-order decoupling 
approximation for these. The resulting expressions for the frequency sum rules, which now 
contain only a static pair correlation function and an inter-atomic potential, are suitable 
for applications. Numerical results for these frequency sum rules have been obtained for 
Lennard-Jones fluids over a wide range of densities and temperatures. The density and 
temperature dependence and the relative importance of higher-particle correlation con- 
tributions to the frequency sum rules have been discussed. 

1. Introduction 

It is well known that dynamical and transport properties of physical systems are embod- 
ied in the time correlation functions (TCFS), Although significant progress has been made 
in calculating the TCFS at a microscopic level, as yet there is no dynamical theory for a 
realistic potential which can readily be used to calculate the TCF for any thermodynamic 
state of fluids. However, it has been recognised that the frequency sum rules or moments 
of TCF play an important role in the analysis Of TCF and in the calculation of the transport 
coefficients. These sum rules can be directly formulated in terms of static correlation 
functions (SCFS) and the inter-atomic potential. Since relatively reliable interaction 
potentials for fluids of rare-gas atoms and for simple metals are known, SCFS can easily 
be calculated using either some established theory or the computer simulation method. 
This in turn enables us to obtain reliable results for frequency sum rules for any density 
and temperature of fluids. 

One theoretical approach for calculating the transport coefficients of dense fluids is 
through the Green-Kubo integral of the TCF of appropriate dynamical variables. For 
example the thermal conductivity is related to the TCF of energy current density (ECD). 
The time evolution of TCFS can be expressed in terms of a relaxation kernel or memory 
function. Thus the problem of calculation of the transport coefficients reduces to the 
calculation of an appropriate memory function. The memory function has in it all 
contributions to dynamics of a many-body system-uncorrelated and correlated binary 
and higher-order collisions. So far there is no first-principles method which can be 
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applied to calculate the memory function for any arbitrary density and temperature of 
fluid. Therefore, one often assumes a phenomenological form (Boon and Yip 1980, 
Hansen and McDonald 1986) for it. The parameter introduced therein are determined 
by frequency sum rules. Although it does not provide a microscopic theory for the 
memory function, it does enable one to make acceptable predictions of the transport 
coefficients of fluids (Tankeshwar et a1 1987,1988). 

In view of the above, we derive in this paper explicit molecular expressions for 
zeroth-, second- and fourth-frequency sum rules of the ECD correlation function. The 
expressions for the zeroth-, second- and fourth-frequency sum rules involve SCFS of up 
to three, four and five particles, respectively. Since nothing is known yet about four- 
and five-particle SCFS, we therefore use a low-order decoupling approximation (Tan- 
keshwar et a1 1987, 1988) for four- and five-particle contributions to the second and 
fourth moments. It enables us to write higher-particle contributions in terms of two- 
and three-particle correlation functions. Exact expressions for two- and three-particle 
contributions and an approximate expression for higher-particle contributions (in terms 
of two- and three-particle SCFS) are given in 9 2. The exact expressions for four- and five- 
particle contributions together with some steps to simplify these, are given in Appendices 
1 and 2. For the static triplet correlation function, we use the superposition approxi- 
mation. Our final expressions involve only the static pair correlation function and 
the inter-atomic potential. After performing angular integration analytically, we have 
computed these expressions for Lennard-Jones (LJ) fluids over a wide range of densities 
and a wide range of temperatures. The numerical results are given in 9 3 .  In 9 4 ,  
we discuss the relative importance of two-, three-, four- and five-particle correlation 
function contributions. In the following paper, we use the results for frequency sum 
rules to calculate the thermal conductivity and ECD correlation function of LJ fluids over 
a wide range of densities and a wide range of temperatures. 

2. Expressions for the frequency sum rules of the ECD correlation function 

For a system interacting via pairwise central forces, we define the ECD variable as 

where 
I 

11' l / '  

is the potential energy. The prime on the summation denotes that 1 = I' terms are 
excluded. rlx and ulx are the x components of position and velocity, respectively, andpl 
is the momentum of the Ith particle. Further rllr = rl - r,  and f i r  = rllt/rllt is the unit 
vector in the direction of rll t ,  The associated dynamical quantity of interest is the ECD 
correlation function 

E(4 = (J:(t)J:(o)) (2) 
with the short-time expansion given by 

E(( )  €0 - E ,  t2 /2 !  + E4 t4/4! + . . . (3) 
where E,,, -E, and E4 are the zeroth-, second- and fourth-frequency sum rules or 
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moments of the spectral function of the ECD correlation function. The angular brackets 
in equation ( 2 )  represent an ensemble average. 

The expression for Eo has been obtained by putting t = 0 in equation (2) and eval- 
uating equilibrium averages. The method of calculation has been described by Bansal 
and Pathak (1974). This gives 

where g(r , )  and g3(r1, r2) are the static pair and triplet correlation functions. From the 
expression for JE(t)  it is obvious that Eo should involve a four-particle correlation, but 
four-particle terms vanish in the pair potential approximation. 

The expression for E2 is obtained by evaluating the thermodynamic average 

E2 = ( j z ( t ) j z ( t ) ) l = ~  
where j z ( t )  is the single time derivative of Jt;(t). From the expression for j z ( t ) ,  one 
expects that the expression for E2 should contain static correlation up to six particles. 
However, it has been found that five- and six-particle contributions turn out to be zero 
in the pair potential approximation and successive application of the Yvon theorem 
(Bansal and Pathak 1974). The final expression for E2 involves a SCF only up to four 
particles. The expression for E2 involving two- and three- particle contributions is 

kB 7- 
= ( M j 2 n / d r 1  g ( r l ) [ ( V  u l x x  + 2u1pp + % u l x x , P l  + i U l x p p X l ) k B T  

+ W 2  1xp r2 1 - Z U 1 x  - +U1pUlxxPl - 2U1pulxpXl + 2(u1xpP1>21 ( 5 )  
and 

- U2 Umx - 2u1, UZrpP2 + 2UlXP2 Ump) 

+ ~ l x C t . l ( 2 ~ 2 X P Z ~ l n p  + UZrP2U12np + ~ l x P l U 2 n P )  

+ kB T(U1xp U2xP1 - UIxU2x - 2u1, U2xxP2 

+ ~ l x p C t . l P 1 ~ 2 x n  + UlxgUzyprl * r2)l (6) 
where a1 and P l  are Cartesian components of r l  and summation over repeated indices 
a, P is implied. Here, and in what follows, E,, represents an m-body contribution to 
nth-frequency sum rules. We also use the notation 

Ulnln  Z.. .n" = a n U ( r l ) / d r l n ,  ar1n-2. a . arl," (7 )  
and r12 = /rl - r 2 ( ,  al ,  a2, . . . , a, denote the Cartesian components, and subscripts 2 
and 12 on U and on a, P in equations (4)-(6) represent the fact that the argument of the 
potential is changed to r2 and rI2. In the above equations, n,  kg ,  T and A4 are the density, 
the Boltzmann constant, the temperature and the atomic mass, respectively. 
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The exact expression for the four-particle contribution to the second-frequency sum 
rule is given in Appendix 1. Since no information about static four-particle correlation 
is available, therefore the exact expression is of only formal interest. In order to have it 
in usable form, we approximate this contribution using a low-order decoupling approxi- 
mation. This has been explained in Appendix A.  The resulting expression now only 
involves the static pair and triplet correlation functions. It is explicitly given as 

The fourth-frequency sum rule of ECD correlation function is defined as 

E4 = (E(L)c ( - t ) ) t = o .  (14) 
It can be written as the sum of two-: three-, four- and five-particle contributions. We 
explicitly write it as 

E4 = E 4 2  + E43 + E 4 4  + E45 .  (15) 
It is straightforward to obtain the two-particle contribution which is given as 
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4 1  
- 7 U l x p p a l U 1 x ,  - 7U1xU1xppl&1 - ~UlBPUlxaaX1 

+ 4 U l X X X  UlxpP1 - 2 ~ 1 x L Y ~ l x a a ~ l  + 2UlppUlxx,~l 

+ 3u1, Ulxaaxl + 2UlxxaUlxax1 - u~pp ulXxxx1 

- 6uIxx ulxxpPl - 3u1pp ulppxxl - 2u1pp ulXxpP1 
- 34u1xxu,xx.~x~) + (kBT)2(YUlxxpp + 3Uixnappx1 

- Y Ulxxppa@l - U1napp)I. (16) 
The notation used here is the same as that in equation (6). It should be noted that E42 
involves up to the fifth derivative of inter-atomic potential. This, therefore, contains 
the highly anharmonic motion of atoms in the fluids. The calculation of the triplet 
contribution is also straightforward but lengthy. It is 
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The above expression for E43 represents the contribution due to simultaneous cor- 
relations between the position of three arbitrary atoms in fluids at equilibrium. It involves 
up to the fourth derivative of the inter-atomic potential. 

The exact expressions for E44 and E45 which involve four- and five-particle SCFS are 
given in Appendices 1 and 2 ,  respectively for completeness. Because no information is 
available about four- and five-particle SCFS, expressions for E44 and E45 are simplified 
using a low-order decoupling approximation. This is explained in Appendices 1 and 2 
and final approximate expressions are as follows: 

E44 = ( ~ ~ ' $ [ G I G I ( ~ O G ~  + a ( k B T ) - 1 G ~ - n I d ~ i g ( r ) ( u i x x p / 3 i  - u i x p p X i  

+ ~ ( ~ B ~ ) - l ~ l x ~ l x ~ ~ l ) )  - G 3  (6G: + ( k B T ) - l ( g G g  - ' 1 " )  
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The above expressions are of practical utility as these now involve static pair and triplet 
correlation functions. 

The expressions for frequency sum rules obtained above are new results. Luckas and 
Lucas (1983)f have attempted to calculate these expressions but they were unsuccessful. 
It should be pointed out that our expression for the fourth sum rules involve a static five- 
particle correlation function which has never appeared in any frequency sum rules 
before. Expressions obtained in this section are purely microscopic and tractable. It is 
expected that these would be useful in the study of an ECD correlation function and 
transport properties of fluids. It should be noted that very little information is known 
about the ECD correlation function for the fluids. 

t Their expressions for the second- and fourth-frequency sum rules are incomplete and incorrect. They have 
ignored the four-body contribution to the second-frequency sum rule, whereas for the fourth-frequency sum 
rule they have calculated only two-particle contributions. Even the two-particle contribution is incomplete. 
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Table 1. Values of the various contributions to the frequency sum rules of the ECD correlation 
function for various densities and temperatures. 

E , / ( ~ ~ / m ~ d )  (lo3) E , / ( ~ ~ / m ~ a ' )  (lo') 

E22 E23 E24 

0.73 0.844 
1.23 0.419 
1.26 0.500 
1.28 0.600 
1.16 0.844 
1.83 0.500 
1.81 0.600 
1.81 0.700 
1.90 0.801 
2.57 0.200 
2.51 0.300 
2.47 0.400 
2.48 0.500 
2.5 0.600 
2.5 0.803 
3.46 0.500 
3.41 0.600 
3.50 0.700 
3.54 0.803 
4.49 0.500 
4.53 0.600 
4.45 0.700 
4.45 0.803 

32.8 18.3 
33.1 18.8 
43.3 22.8 
63.0 24.2 

139.2 -3.6 
143.1 12.5 
190.39 5.5 
274.8 -14.6 
473.9 -56.7 
206.6 2.9 
235.5 4.4 
282.9 3.0 
374.6 -6.2 
520.2 -28.5 

1052.1 -109.8 
1025.9 -40.92 
1305.3 -77.6 
1906.5 -132.4 
2738.8 -163.5 
2163.1 -76.7 
2883.9 -128.5 
3644.4 -171.0 
4951.1 -151.9 

26.6 
33.9 
45.1 
63.2 

107.9 
145.4 
193.3 
269.8 
452.6 
133.2 
199.7 
277.6 
396.5 
568.3 

1138.0 
1192.6 
1593.1 
2419.6 
3548.9 
2731.9 
3924.7 
5152.8 
7217.7 

-5.4 
-6.1 
-8.8 

-12.9 
-6.3 

-17.5 
-22.9 
-23.2 

6.0 
-5.4 

-11.4 
-19.1 
-27.7 
-31.3 

81.8 
-35.3 
-18.1 

80.6 
405.9 
-27.2 

47.5 
265.2 
893.5 

-1.3 
-5.7 
-1.0 
-2.2 
-7.5 
-2.3 
-4.6 
-8.5 

-12.9 
-0.2 
-0.7 
-1.7 
-4.0 
-7.8 

-10.0 
-5.9 
-8.9 
-4.4 
33.4 

-4.9 
-0.2 
25.3 

126.7 

E42 

4.275 
9.06 

12.32 
17.56 
27.89 
57.10 
75.41 

106.08 
189.14 
73.17 

107.30 
147.10 
211.83 
307.9 
630.0 
890.89 

1181.05 
185.81 

2791.14 
2631.03 
3840.1 
5003.86 
7091.5 

E43 

1.88 
0.47 
0.89 
2.99 

20.94 
8.76 

18.68 
42.46 

103.03 
2.68 
7.95 

18.32 
40.87 
88.81 

408.21 
195.22 
362.62 
798.34 

608.39 
1089.6 

1203.1 
2107.2 
4047.4 

E44 

1.06 
0.043 
0.74 
1.34 
3.51 
1.23 
2.15 
3.54 
7.27 
0.118 
0.388 
0.900 
1.75 
3.03 

15.44 
1.877 
3.51 

11.06 
54.77 

1.335 
5.51 

28.30 
146.08 

E4 

0.905 
0.032 
0.066 
0.149 
0.586 
0.100 
0.221 
0.412 
0.418 
0.003 
0.015 
0.052 
0.132 
0.272 

-0.329 
0.145 
0.212 

-0.181 
-3.16 

0.092 
-0.083 
-1.197 
-6.896 

3. Numerical results 

In order to obtain the numerical estimate for the frequency sum rules from the 
expressions obtained in 8 2 ,  we first perform the angular integration. The angular 
integration of the two-particle contribution is straightforward and simple. The procedure 
for angular integration has been described by Bansal and Pathak (1977) and, in a 
simplified manner, it has been recently discussed by Tankeshwar et a1 (1987). The static 
pair contributions involve single integration, whereas the triplet contributions involve 
three-dimensional integration. The resulting expressions involve only static pair and 
triplet correlation functions and the inter-atomic potential. For the triplet correlation 
function, we use the superposition approximation given as 

g3G.1, r2) = g(rl)g(~*)g(Jrl - 4). (25) 
We use the LJ potential as interaction potential. The static pair correlation function is 
calculated using the method of Sung and Chandler (1974) based on optimised cluster 
theory. This g ( r )  has been found to be in good agreement (Pathak et a1 1985) with 
molecular dynamics data. Numerical integration is done using the Gauss quadrature 
method. The accuracy of our numerical work is better than 5%. The calculation has 
been done over a wide range of densities and a wide range of temperatures for the LJ 
system. In order to see the relative importance of two-, three-, four- and five-particle 
contributions, we have presented these separately in table 1 for various densities n* = 
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no3 and T* = kBT/&, where 0 and E are two parameters of the LJ potential having the 
dimensions of length and energy, respectively. 

4. Summary and conclusion 

In this paper, we have obtained the complete expressions for the zeroth-, second- and 
fourth-frequency sum rules of the ECD correlation function. The expressions presented 
here are new and are expected to be useful in the study of the ECD correlation function. 
Although exact expressions involve SCFS up to five particles, we have succeeded in 
approximating them. Final expressions now involve only g(r )  and U(r ) .  The expressions 
are lengthy but simple and can be used for practical applications. We have computed 
these expressions for a LJ system over a wide range of densities and a wide range of 
temperatures. 

From the numerical results, it can be seen that three-particle contributions are 
appreciable for all the frequency sum rules. In contrast, the four- and five-particle 
contributions (reduced to two-particle contributions) to the second and fourth sum rules, 
respectively, are quite small. At  the triple point, both of these are about 10% of the two- 
particle contributions. The four-particle contribution to the fourth-frequency sum rule 
is not negligible and at the triple point it is about 25% of the pair correlation contribution. 
Further the triplet contribution to Eo becomes negative as the density increases for a 
given temperature. Finally it becomes negative at a higher temperature for any density, 
whereas the three-body contribution to E2 becomes positive with increasing temperature 
and density. The ratio of triplet contribution to pair contribution to the zeroth- and 
second-frequency sum rules range from -10 to 65% and from -20% to 25% for 
the densities and temperatures investigated here. On the contrary, the three-body 
contribution to E 4  is positive for all the densities and temperatures. It also increases with 
increasing density and decreases with increasing temperature. The triplet contribution 
to the fourth-frequency sum rule is about 1-70% of the two-particle contribution for the 
range of densities and the range of temperatures considered here. It is also noted that 
frequency sum rules of the ECD correlation function show appreciable density and 
temperature dependences. 

It is of interest to know the dilute-gas limit of these frequency sum rules, especially 
if one wishes to calculate thermal conductivity as will be done in the following paper. In 
the n + 0 limit we find that 

Eo = v ( k g  T/kf)3kf2 + o ( n )  

E2 = A n  + O(n2)  

E4 = Bn + O ( n 2 )  

(26) 

(27) 

(28) 

where A and B are independent of density and depend on temperature. Explicit 
expressions for A and B can be obtained from equations (5) and (16) with the under- 
standing that g(r )  will have the low-densityvalue. It may also be noted that the first term 
in equation (26) is the contribution from the purely kinetic part of the ECD correlation 
function. 
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Appendix 1. Four-particle contributions to E2 and E4 

Since very little is known about the static quadruplet correlation function g,(rl, r2,  r3) 
and no tractable and successful closure for it is yet available, we therefore use a low- 
order decoupling approximation for four-particle contributions to the second- and 
fourth-frequency sum rules of the ECD correlation function as explained below. 

the four-particle contribution to the second moment, 
is 

The exact expression for 

(Al . l )  

Here we have used the same notation as in the text. The four-particle correlation function 
in equation (Al .  1) is defined as 

n3g4( r l , r2 , r3 )  = E (6(ri -rrk+rn)6(rz-ri+rn)6(r3-rm+rn)).  (A1.2) 

Here the four arbitrary atoms are labelled k ,  1, m and n with the nth atom at the origin. 
The pair potential obeys the following property: 

a U ( r k n ) / a r k a  = a u ( r n k ) / a r k n =  - a U ( r k n ) / a r n n =  [au(rl)/arl ] ( a r ,  l a r k , )  (A1.3) 

A similar expression can be derived from these for higher derivatives of the potential. 
Usingexpressions (A1.2) and (Al ,3) ,  we can equivalently write the first term of equation 
(Al . l )  as 

k# i#m#n 

(A1.4) 

We note that there is no direct coupling between the atoms labelled k, land m; therefore 
we approximate (A1.4) as 

(A1.5) 

It should be pointed out that, once the correlation between k ,  1 and m is neglected, only 
LY = /3 contributes in (A1.5). Finally (A1.5) can be written as 

Tl = G:G1 (A1.6) 

where G1 and G3 are defined in the text. T ,  is one of the terms in equation (8). Following 
the argument used to obtain equation (A1.4) we obtained equation (8). 

The exact expression for the four-particle contribution to the fourth-frequency sum 
rule is 
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(Al.8) 

Since there is no direct coupling between the atoms k and m or I ,  therefore we can 
decouple expressions (A1.8) as 

(A1.9) 

Here it may be noted that coupling between m and I and between I and n is not weak as 
it is direct. 

Finally, the above expression can be written as 
T2 = - 9G2G1. (A1.10) 

Again we use the same argument to obtain the remaining terms in equation (18). 

Appendix 2. Five-particle contribution to E4 

Our expression for E4 involves a five-particle SCF. The static pentuplet correlation 
function has never appeared in any frequency sum rules so far and nothing is known 
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about it. In the absence of any knowledge, we decouple its contribution in terms of the 
static pair and triplet correlation functions. The exact expression for E45 is 

(A2.1) 

n 4 g 5 ( r l , r 2 , r 3 , r 4 )  = C. (a(r1 - - k + r n ) a ( r 2 - r i f r n ) 8 ( r 3 - r m + r n )  
j#k#l#m#n 

x 6(r4 - r, + r n ) ) .  (A2.2) 

Here five arbitrary atoms are labelled j ,  k ,  1, m and n with the nth particle at the origin. 
Using (A2.2) and (A1.3), the first term of equation (A2.1) can equivalently be written 
as 

(A2.3) 

Since the coupling between k ,  I ,  m and j atoms is not direct, we decouple (A2.3) as 

(A2.4) 

It should be noted that, after neglecting the coupling, only /3 = x contributes. Finally 
the above expression can be written as 

T = GiG:. 

Following the above method, we obtain the remaining terms in equation (19) 
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