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Abstract, Expressions for zeroth-, second- and fourth-frequency sum rules of energy current
density correlation function have been derived. These exact expressions involve static
correlation functions of up tofive particles. Because of the non-availability of any information
about triplet and higher-particle correlation functions, we use a low-order decoupling
approximation for these. The resulting expressions for the frequency sum rules, which now
contain only a static pair correlation function and an inter-atomic potential, are suitable
for applications. Numerical results for these frequency sum rules have been obtained for
Lennard-Jones fluids over a wide range of densities and temperatures. The density and
temperature dependence and the relative importance of higher-particle correlation con-
tributions to the frequency sum rules have been discussed.

1. Introduction

Itis well known that dynamical and transport properties of physical systems are embod-
iedin the time correlation functions (TCFs). Although significant progress has been made
in calculating the TCFs at a microscopic level, as yet there is no dynamical theory for a
realistic potential which can readily be used to calculate the TCF for any thermodynamic
state of fluids. However, it has been recognised that the frequency sum rules or moments
of TCF play an important role in the analysis of TCF and in the calculation of the transport
coefficients. These sum rules can be directly formulated in terms of static correlation
functions (scrs) and the inter-atomic potential. Since relatively reliable interaction
potentials for fluids of rare-gas atoms and for simple metals are known, SCFs can easily
be calculated using either some established theory or the computer simulation method.
This in turn enables us to obtain reliable results for frequency sum rules for any density
and temperature of fluids.

One theoretical approach for calculating the transport coefficients of dense fluids is
through the Green—-Kubo integral of the TCF of appropriate dynamical variables. For
example the thermal conductivity is related to the TCF of energy current density (ECD).
The time evolution of TCFs can be expressed in terms of a relaxation kernel or memory
function. Thus the problem of calculation of the transport coefficients reduces to the
calculation of an appropriate memory function. The memory function has in it all
contributions to dynamics of a many-body system—uncorrelated and correlated binary
and higher-order collisions. So far there is no first-principles method which can be

0953-8984/89/356181 + 12 $02.50 © 1989 IOP Publishing Ltd 6181



6182 K Tankeshwar et al

applied to calculate the memory function for any arbitrary density and temperature of
fluid. Therefore, one often assumes a phenomenological form (Boon and Yip 1980,
Hansen and McDonald 1986) for it. The parameter introduced therein are determined
by frequency sum rules. Although it does not provide a microscopic theory for the
memory function, it does enable one to make acceptable predictions of the transport
coefficients of fluids (Tankeshwar ef al 1987, 1988).

In view of the above, we derive in this paper explicit molecular expressions for
zeroth-, second- and fourth-frequency sum rules of the ECD correlation function. The
expressions for the zeroth-, second- and fourth-frequency sum rules involve SCFs of up
to three, four and five particles, respectively. Since nothing is known yet about four-
and five-particle scrs, we therefore use a low-order decoupling approximation (Tan-
keshwar et al 1987, 1988) for four- and five-particle contributions to the second and
fourth moments. It enables us to write higher-particle contributions in terms of two-
and three-particle correlation functions. Exact expressions for two- and three-particle
contributions and an approximate expression for higher-particle contributions (in terms
of two- and three-particle sCFs) are given in § 2. The exact expressions for four- and five-
particle contributions together with some steps to simplify these, are givenin Appendices
1 and 2. For the static triplet correlation function, we use the superposition approxi-
mation. Our final expressions involve only the static pair correlation function and
the inter-atomic potential. After performing angular integration analytically, we have
computed these expressions for Lennard-Jones (LJ) fluids over a wide range of densities
and a wide range of temperatures. The numerical results are given in § 3. In §4,
we discuss the relative importance of two-, three-, four- and five-particle correlation
function contributions. In the following paper, we use the results for frequency sum
rules to calculate the thermal conductivity and ECD correlation function of Ly fluids over
a wide range of densities and a wide range of temperatures.

2. Expressions for the frequency sum rules of the Ecp correlation function

For a system interacting via pairwise central forces, we define the ECD variable as

. ViP5 L Uy
Jx(f)=2 _+§; uzl/sz’E; “'—6r”11'x'01 (1)

7\ 2m I

where

=12 up =3 u(lr;—re)
w I
is the potential energy. The prime on the summation denotes that / =/' terms are
excluded. r;, and v, are the x components of position and velocity, respectively, and p,
is the momentum of the Ith particle. Further r; =r, — r, and #; = ry/ry is the unit
vector in the direction of r;. The associated dynamical quantity of interest is the ECD
correlation function

E(r) = JL(0T5(0) 2)
with the short-time expansion given by
E(f)y=FE, — E; /20 + E4t* /41 + . .. (3)

where E;, —FE, and E, are the zeroth-, second- and fourth-frequency sum rules or
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moments of the spectral function of the ECD correlation function. The angular brackets
in equation (2) represent an ensemble average.

The expression for Ej has been obtained by putting ¢ = 0 in equation (2) and eval-
uating equilibrium averages. The method of calculation has been described by Bansal
and Pathak (1974). This gives

35 kBT>3 . ksT
E0—4<M M+Manr1g(r1)
2
><[U%+U%xr2+10kBT(U1—lexl)—2UU1xx1]+%kBT

X ffd"1d"283("1a72)[U1U2+2U1xU2x"1 cry; —2U Uy, 4)

where g(r,) and g;(ry, r,) are the static pair and triplet correlation functions. From the
expression for J$(¢) it is obvious that E, should involve a four-particle correlation, but
four-particle terms vanish in the pair potential approximation.

The expression for E, is obtained by evaluating the thermodynamic average

Ey =TSm0

where ji(t) is the single time derivative of J¢(r). From the expression for J¢(¢), one
expects that the expression for E, should contain static correlation up to six particles.
However, it has been found that five- and six-particle contributions turn out to be zero
in the pair potential approximation and successive application of the Yvon theorem
(Bansal and Pathak 1974). The final expression for E, involves a SCF only up to four
particles. The expression for £, involving two- and three- particle contributions is

kpT\? 3
Ep= (‘P‘> ”fd"l gr(4 Uy + 2Uvgg + 3U1pB1 + 38U pppx1 )kpg T

M
+ %U%xﬂr% - %U%x - %Ulﬂ lexﬁl - %Ulﬁ leﬁxl + %(leﬂﬁl)z] (5)
and
kg T n?
En="2 f dry dr, gs(ry, 1)U (U Uy + UpUs,

— UyUp —2U1, UypBy +2U B2 Ursp)

+ Uy QUpBoUvag + UnBrUrpap + UpeB1Us4g)

+ kg T(Up Uy By — U Uy = 2U Uy Br

+ Unga1f1Use + UrpUppry - 12)] (6)

where & and 3 are Cartesian components of 7, and summation over repeated indices
@, f is implied. Here, and in what follows, E,,, represents an m-body contribution to
nth-frequency sum rules. We also use the notation

Ulalaz...a,, = anu(rl)/arloq arlozz* ‘e arlan (7)

andry, = |r; — ry|, ay, @y, . . ., @, denote the Cartesian components, and subscripts 2
and 12 on U and on «, f in equations (4)-(6) represent the fact that the argument of the
potential is changed to 7, and r,. In the above equations, n, kg, T and M are the density,
the Boltzmann constant, the temperature and the atomic mass, respectively.
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The exact expression for the four-particle contribution to the second-frequency sum
rule is given in Appendix 1. Since no information about static four-particle correlation
is available, therefore the exact expression is of only formal interest. In order to have it
in usable form, we approximate this contribution using a low-order decoupling approxi-
mation. This has been explained in Appendix A. The resulting expression now only
involves the static pair and triplet correlation functions. It is explicitly given as

Ey = (kg T/AM?)[G3G1 + G3(G3—2G5) + GsG1(Gs —2G3) — G5Gy].

Here

and

G, = nj-drlg(rl)lex
G, =n? J,I' drydr, ga(ry, 1)Uy Ui B2
G; =n[dr1g(r1)U1Xx1

G, = n? U dry dr; ga(ry, r2) Uy Us,

G; =nfdr1 glr)Uy.

The fourth-frequency sum rule of ECD correlation function is defined as

E, = J3(0J (=0)-0-

(8)

©)

(10)

(11)

(12)

(13)

(14)

It can be written as the sum of two-, three-, four- and five-particle contributions. We
explicitly write it as

It is straightforward to obtain the two-particle contribution which is given as
’l(kB )?

Q=

E;=Ep+E;n+Ey+ Egs.

fdrl g(rl)[U(3U1xx + % U%xﬁ + 2U1xaﬁ leﬁa/l)

+ Us(4Uiay — 3U Uy + UigUyy + Upo Urpg
+3U1,Ugp + 2U1 Utrap@y — UryoUapxy) + U (U1 Usee
+ Uppp U @01 + 3U pU1p01) + 301 UrgUsap?d
+ Uy (kg T)  N(Uo U UrapBi — Uy Uig) + ks T(?32 U1x/3

F UigUpp — 11U Upgp + %3 UigpUse + $U1appUra
+ 3U%aﬁ - le 8 + 2903, + QU Usepp — 12U Uyx

— Uiaa Ugp + 4U 1 Unnaa?t + Ut + 110145, UncaaBri71
+4U 15,8171 + Ulraa?? + 2U s UtwaB7 + 4U30pB7
— 40U, psBT — 13U 145 Urix @1 + Usppa UrxaX1 + 4U1ap Uirapxy
+ 5U 15 UrpaaXt T 3UrpUrapay — B Uranp Uy

(15)
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-4 U1xﬁ5“1U1m - 7U1xU1x/3ﬁafY1 - 8U1ﬁ5U1xaaxl

+4U 1 UigB1 — 2U e Uniaa @1 + 2U g Usa @y

+3U 1 UnyaaX1 + 2U o UriaX1 = Urgg Unn X1

—6U 4 quﬁﬁl - 3U1ﬁﬂ Ulﬁﬁxxl - 2U1Bﬁ U1xxp/31

= 34U, Uy X)) + (kg T2 (385 Usiipp + 3U 1 raappX1

= ¥ Uleppa @1 = Ulaapp)]- (16)

The notation used here is the same as that in equation (6). It should be noted that Ey,
involves up to the fifth derivative of inter-atomic potential. This, therefore, contains
the highly anharmonic motion of atoms in the fluids. The calculation of the triplet
contribution is also straightforward but lengthy. Itis

ks T\* n’ 241 15
E= (2 ) 5[ drar gyt rilen TC$-UsigUseg = % Vs U

+ F U Uspp + 83U 14 Usep + 10U 1,55 U,

+ 3U1ga Unp@s = SUsa Urraa @y + 2U g Unpa @ty

= UppaUspay + 13U 13Uz —~ SUszpg Uy @4

= 12U1o UsapB1 = UreaUipg = TU1capX1 Usap

= 3Us Uiappe @y = 2Us0p Urpe vy + 2U 1483 U,

= Unx UtxaaX1 = 14U (g UniaX2 + U1 Uspg

= 88Uz UraaX1 — 40U 135 UnippB1 B2 + 8Uwpy Unpye 0 @3

+ 4U1opx UnapeB1B2 + 2U 11 UneaaB1B2 + 4U s Unipa @1 B2
+ Utraa Useaa?t * 72 + 11U 15, UsvaaB 172 + SULpgUnyyy @1 @2
= 3UppsUnaaBr = 2Upp @ Usyayy B1 + 2U 1o Uy

= 3Ups Urgpex1 — 2Up8p U g By + 54U 1 Uny x4

= 18U 14pUsriB1 — 4U2gUrrixB1 — UspgU iy

+3U 1 Upupp + UrgaUnpp = 12U Unwa @1 — 2U 1884 Unir @2
+4U g Urp @y + 5U 1, Unepai ) + % UL Uy

+ 3UaUnoUs + B UroUnio Uiy + 5U 1 Uigg U,

+4U 1, Usgg Uy + 30U, U + 6U 1, Up Uy +2U 155U Uy
= UpUippgUs = 2U U g Uy + Uy Urypg Uy — 3U 15U, Uy
—UigUsaUtzag + 22U U1 Urep + U1g(U1o Usap — Uy Usg
+2Up Upyp +2Us5Urpe + 3U 15Uy +2U5 Uyg

= UtapUr @y = Usy Unagp @y = 2U g Une s — 2U 1 Upp g
= 2Upa UngapXs — 3U X1 Uzap + Usp @y Uineg + Usa Usang
+ UseaUtaeaP12 — U Urps — 3UaUngay)
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+ U [BUnps Ui @1 — 3U1ga UniaB1 + 4Up0 Uzap B

+ $UaUn2apB1 = 2U1pga Unce — 2Uogs Ungr g

+ TUpr Upggay + TUp Uppary + 6Up 0 Uy

—2Upa 1 Upgp + 302085 Urnea + 3Unop, Urp1 71

+ 3U1apy Unnip 1712 — Ut Unp@y + UsapUpnpay

+ 3Usap Usptty + 38Uz Urgary + UpgpUppary +3U1,5Upp s

= 3Usp Unpay + 3U 1 Unp vy — $U50 Uy + 83U Uy

= 33U Unie s + UzopUnnigay — UrggUngp@y + 3U1 Uppyy

— U Upaa + 2U 280 (Utngyy Brt1z = Uy @181 + 3U e Branz

= 3Utxaa@1B1) + Usapp(Usexzs + 35U a0y + Uy )

+ Ulapp Un s = UngUrop@s + 2U 05 Usgat + Uneo Unii 1]

+ 43U 10 [Usag (UnB1 = Urnef1 + 4UnB2) = 3Uno UnnapBr s

+ 2U1ap Uy + 3U Ly Usapv1B1 + 4Uo Ugg, Bray — 20U Urnggfil
+ Ui [Uniup(Uig — 23Uz + Unyp) = 3U1apUzp — 3Unpa

X (Uppay = 3Uppary) + 2U g, Uppay — Un Usippay

+ Uso Unngpan] + (kg T) 7' [JU3U 1,5 (Ureg + Usyp)

+ 30U, U Up[Ung + Upg = 3U g — (BUs U1 /U]

+ 31U Uy (Ui Usgya By + 2U Upgy 1 B2 + SUL Uy a1 B2

= Uy U (U Usegf1 + Un UnagBr = Unc Uz + 2U 1 Unaap By
= 2Up UpaBo = Unia UnaeB12) = UrUpa (U Usap B2

+ U UsgpBa + Ui Usapfra) — 1U U Uz Urnpy a1 B2 ] (17)

The above expression for E,; represents the contribution due to simultaneous cor-
relations between the position of three arbitrary atomsin fluids at equilibrium. Itinvolves
up to the fourth derivative of the inter-atomic potential.

The exact expressions for Ey and E,s which involve four- and five-particle SCFs are
given in Appendices 1 and 2, respectively for completeness. Because no information is
available about four- and five-particle sCFs, expressions for E,, and E,s are simplified
using a low-order decoupling approximation. This is explained in Appendices 1 and 2
and final approximate expressions are as follows:

k 2
Eu= <B7T> %{G5G1<20G1 + (kg T) "' Gy — ”J’dh 8N (U1wpB1 — UreppXy
+ (kg T)_lleleﬁﬁ1)> - G; <6G% + (kg T)'(3Gy ~ G1p)

+nfdr1 gr)UsX1 - n? ffd"l ergS(rl’rZ)[leﬁﬂUZx

+ UppUppa s +4(kg T) MU UnigUsap @1 =381 U1, Urzea Unog
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+ 22U UnoUnopB1 +2U 1 Uneo UropB1)] — G1 (ks T) 1 Gy

+ kg T) " (G5G, — G9GI)> -Gs (”2 ff drydr, g3(r1, r)[Usa Use
- 2U1xx UZxx + leﬂ(zUwaﬂ @ — UszmﬁZ)

- (kB T)~1(U1xﬁl lea(leoz + %Ullxa) + %U%X,BUZ)]

— (koT)1Gx(Gs ~ 1G)) + G (s T) 46,6, = (G, + G)

+ %(kBT)_lnz ffdrl dry g3(ry, r)[U U Uy, — U U Uy,

— UL (U1 Usepaiy + Up UpganyB)]

- ’lfd"l gr))U Upxy + (kg T) M(3G4G, + 2G 4G,

+2G4n? ff drydr, g3(r17r2)U1xx1U2xx):, (18)
and
Eys = (ksT/12M3)G {Gs[G1(Gs — 2G3) + Gi] + G3(G,G; — 2G,)} (19)
where
G¢ = n? J’f drydr, 83("1,"2)U1xﬂU2xaﬁ0/2 (20)
G, =’1fd’1 g(rl)U%xﬁ (21
Gs = [ drig(r) U3 @)
Gy = 3n [ dry g0V, Use @3)
Gy =”lJ’d’1 gr)Ua Uy, (24)

The above expressions are of practical utility as these now involve static pair and triplet
correlation functions.

The expressions for frequency sum rules obtained above are new results. Luckas and
Lucas (1983)1 have attempted to calculate these expressions but they were unsuccessful.
It should be pointed out that our expression for the fourth sum rules involve a static five-
particle correlation function which has never appeared in any frequency sum rules
before. Expressions obtained in this section are purely microscopic and tractable. It is
expected that these would be useful in the study of an ECD correlation function and
transport properties of fluids. It should be noted that very little information is known
about the ECD correlation function for the fluids.

t Their expressions for the second- and fourth-frequency sum rules are incomplete and incorrect. They have
ignored the four-body contribution to the second-frequency sum rule, whereas for the fourth-frequency sum
rule they have calculated only two-particle contributions. Even the two-particle contribution is incomplete.
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Table 1. Values of the various contributions to the frequency sum rules of the ECD correlation

function for various densities and temperatures,

Ey/(e/mo”) Ey/(e*/m*a®) (10°) EJ/(e°/m*a”) (107)

T n* Ey Ep Eyn Exy Ey Ey Ey Eqy Ess
0.73  0.844 32.8 18.3 26.6 -5.4 -1.3 4.275 1.88 1.06 0.905
1.23  0.419 33.1 18.8 33.9 -6.1 -5.7 9.06 0.47 0.043 0.032
1.26  0.500 43.3 22.8 45.1 -8.8 -1.0 12.32 0.89 0.74 0.066
1.28 0.600 63.0 24.2 632 129 -2.2 17.56 2.99 1.34 0.149
1.16 0.844 139.2 -3.6 107.9 -6.3 =7.5 27.89 20.94 3.51 0.586
1.83  0.500 143.1 12.5 1454 -17.5 =23 57.10 8.76 1.23 0.100
1.81 0.600 190.39 5.5 1933 229 -4.6 75.41 18.68 2.15 0.221
1.81 0.700 274.8 ~14.6 269.8 —23.2 -85 106.08 42.46 3.54 0.412
1.90 0.801 473.9 -56.7 452.6 6.0 —12.9 189.14 103.03 7.27 0.418
2,57 0.200 206.6 2.9 133.2 -5.4 ~-0.2 73.17 2.68 0.118 0.003
2,51 0.300 235.5 4.4 199.7 -114 -0.7 107.30 7.95 0.388 0.015
2.47 0.400 282.9 3.0 277.6  -19.1 -1.7 147.10 18.32 0.900 0.052
2.48 0.500 374.6 —-6.2 396.5 =277 -4.0 211.83 40.87 1.75 0.132
2.5 0.600 520.2 —28.5 568.3 313 -7.8 307.9 88.81 3.03 0.272
2.5 0.803 1052.1 —109.8 1138.0 81.8 —10.0 630.0 408.21 15.44 -0.329
3.46 0.500 1025.9 —-40.92 1192.6 —353 =59 890.89 195.22 1.877 0.145
341 0.600 1305.3 -77.6 1593.1  -18.1 -89 1181.05 362.62 3.51 0.212
3.50 0.700  1906.5 -132.4 2419.6 80.6 —-4.4 185.81 798.34 11.06 —0.181
3.54 0.803 2738.8 —163.5 3548.9 405.9 334 2791.14 1089.6 5477 -3.16
4.49 0.500 2163.1 -76.7 2731.9  -=27.2 —-4.9 2631.03 608.39 1.335 0.092
4.53 0.600 2883.9 —128.5 3924.7 47.5 —-0.2  3840.1 1203.1 551 -0.083
445 0.700 3644.4 -171.0 5152.8 265.2 25.3 5003.86 2107.2 28.30  —1.197
4.45 0.803 4951.1 -151.9 7217.7 893.5 126.7  7091.5 4047 4 146.08 —6.896

3. Numerical results

In order to obtain the numerical estimate for the frequency sum rules from the
expressions obtained in § 2, we first perform the angular integration. The angular
integration of the two-particle contributionisstraightforward and simple. The procedure
for angular integration has been described by Bansal and Pathak (1977) and, in a
simplified manner, it has been recently discussed by Tankeshwar er al (1987). The static
pair contributions involve single integration, whereas the triplet contributions involve
three-dimensional integration. The resulting expressions involve only static pair and
triplet correlation functions and the inter-atomic potential. For the triplet correlation
function, we use the superposition approximation given as

g3(ri, ) = g(r)g(r)g(lry — ra)). (25)

We use the L1 potential as interaction potential. The static pair correlation function is
calculated using the method of Sung and Chandler (1974) based on optimised cluster
theory. This g(r) has been found to be in good agreement (Pathak e al 1985) with
molecular dynamics data. Numerical integration is done using the Gauss quadrature
method. The accuracy of our numerical work is better than 5%. The calculation has
been done over a wide range of densities and a wide range of temperatures for the LJ
system. In order to see the relative importance of two-, three-, four- and five-particle
contributions, we have presented these separately in table 1 for various densities n* =
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no® and T* = kpT/e, where o and ¢ are two parameters of the Ly potential having the
dimensions of length and energy, respectively.

4. Summary and conclusion

In this paper, we have obtained the complete expressions for the zeroth-, second- and
fourth-frequency sum rules of the ECD correlation function. The expressions presented
here are new and are expected to be useful in the study of the ECD correlation function.
Although exact expressions involve SCFs up to five particles, we have succeeded in
approximating them. Final expressions now involve only g(r) and U(r). The expressions
are lengthy but simple and can be used for practical applications. We have computed
these expressions for a Ly system over a wide range of densities and a wide range of
temperatures.

From the numerical results, it can be seen that three-particle contributions are
appreciable for all the frequency sum rules. In contrast, the four- and five-particle
contributions (reduced to two-particle contributions) to the second and fourth sum rules,
respectively, are quite small. At the triple point, both of these are about 10% of the two-
particle contributions. The four-particle contribution to the fourth-frequency sum rule
isnotnegligible and at the triple pointitis about 25% of the pair correlation contribution.
Further the triplet contribution to E, becomes negative as the density increases for a
given temperature. Finally it becomes negative at a higher temperature for any density,
whereas the three-body contribution to £, becomes positive withincreasing temperature
and density. The ratio of triplet contribution to pair contribution to the zeroth- and
second-frequency sum rules range from —10 to 65% and from —20% to 25% for
the densities and temperatures investigated here. On the contrary, the three-body
contribution to E, is positive for all the densities and temperatures. It also increases with
increasing density and decreases with increasing temperature. The triplet contribution
to the fourth-frequency sum rule is about 1-70% of the two-particle contribution for the
range of densities and the range of temperatures considered here. It is also noted that
frequency sum rules of the ECD correlation function show appreciable density and
temperature dependences.

It is of interest to know the dilute-gas limit of these frequency sum rules, especially
if one wishes to calculate thermal conductivity as will be done in the following paper. In
the n— 0 limit we find that

EO = 3'XS'(kB T/M)3M2 + O(ﬂ) (26)
E, = An + O(n?) (27)
E, = Bn+ O(n*) (28)

where A and B are independent of density and depend on temperature. Explicit
expressions for A and B can be obtained from equations (5) and (16) with the under-
standing that g(r) will have the low-density value. It may also be noted that the first term
in equation (26) is the contribution from the purely kinetic part of the ECD correlation
function.
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Appendix 1. Four-particle contributions to £, and E,

Since very little is known about the static quadruplet correlation function g4(ry, r, r;)
and no tractable and successful closure for it is yet available, we therefore use a low-
order decoupling approximation for four-particle contributions to the second- and
fourth-frequency sum rules of the ECD correlation function as explained below.

The exact expression for E,4, the four-particle contribution to the second moment,
is

E,= ffjdﬁ drydrs go(ri, ry, r3)[Un Upe a1 B Usgg

+ Uy Uy @1 B33 Uzep — 2U 1 Up B, Uy
=201 Upy By Urg + Ui Upo (Us — Ups)). (AL1)

Here we have used the same notation asin the text. The four-particle correlation function
in equation (Al.1) is defined as

nigu(ry,ry,ry) = > O(ri—rp+r,)0(r,—r +r,)0(rs —r, +r,)) (A1.2)

k#l#£m#n

M2”

Here the four arbitrary atoms are labelled k, /, m and n with the nth atom at the origin.
The pair potential obeys the following property:

aU(rkn)/arka= aU(rnk)/arka a[J(rkn /arna aU(rl)/arll(arl/arka) (A13)

A similar expression can be derived from these for higher derivatives of the potential.
Using expressions (A1.2) and (A1.3), we can equivalently write the first term of equation
(Al.l) as

T1=

aU,, dU 92U,
nk > (Al.4)

T Tuka? nip
k#I#FEm#En <8r (:)rnx ar,w,arnﬂ

We note that there is no direct coupling between the atoms labelled &,/ and m; therefore
we approximate (Al.4) as

U U, <62U,,m>
T, = . .
1 k,[,zm,n < arnx rnkx><arnx rnlx> ar%x (Al 5)

It should be pointed out that, once the correlation between &, / and m is neglected, only
« = B contributes in (A1.5). Finally (A1.5) can be written as

T, = G3G, (A1.6)

where G, and G are defined in the text. T, is one of the terms in equation (8). Following
the argument used to obtain equation (A1.4) we obtained equation (8).

The exact expression for the four-particle contribution to the fourth-frequency sum
rule is

kB 27’13
Ey= (7 *M—ffjdrx drydr; g4(ry, ry, PsHU e (U Uz

= 3Upg Upav a2 + U U3 =2U 15 U1 B13)

+ 3U 1o (SU 1. Usga B2 = U UsapBr + Us Ui3apB2)
= 60U 1 (UpUsgo @y + Uy Ui3) + Uy (U Uiy, + 20U, Usgg
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+ Utax Uiz 013 = U1pay Usep) + Unap (AU Usgoe B1 @3

+ 33U Usyyy 3By + U, Usygas) = Usap(BUp Ureaa Br@13

+ 3Up Utnryy B2 130 = U Ursypy @02 ¥13 — U, Uppays)

+ U (Unagy Usep 7201+ Usapp Uy a02) + Upe (Urapp U @z

+ Utapy Uinp @2 ¥13 = 3U1pp 02 Uy = 2U 1o Usx + 2U 13 Usaparz)

= U UpppUse + UnepUnipa s + 3Uno Useppas

+ 3Unap Unp@3) = Up(RU 1, Uz + Urpp Ui

+ U Unsep @13 = 2U 1 Utzape @13 + Urra Unsepp 13

+ 3U1ap Ursp @13) = Uip(Uneo UseaB3 + 3 Unp Usra @

+ 2U;, Usap +3U25 Uz ) =2U28 Usgrp U i3

+ Uty (Usay Unipan vy + 21U Usg, oy 1)

+ (4kp T) U Ugg(U Uyyp +3U,Usyg — Uz Uss

- 2U1xU3a/3a/1 —2Ux USaﬂa2 “2U3xU1aﬁﬁ3 —2U3 U3aﬂa3

—2U3 Usgpas) + Ui Usyg(Uy Useg — Uy Unyg)

— §Up(U Uy + U Us) + Uy Up (Usay Usgy 01 B2 + 2U 20, Uz, o,

+ Uty Urspy @281 + Usey Urzpy @281 + Uray Usgy a1z

+ Uzay Usgy Brany) + U1, Usey (U Usgy a1 By — Uz, Usg, 01 B13)

= Up Uiy QUi Uigy s 13 +2U 145 Urg, @2 813 + 2U3,8 Uy @2 B33

= 2Us4p Ursgy @2 813) = U U (4U 1, Ursap By + Us UsspaB3)

— 2U Uso Upa U Bo ] (ALT)
We write the second term of equation (A1.7) using (A1.2) and (A1.3) as
02U, 80U,y 302U, >

Tz =-3 < ¥
2 mila
k#l#Fm#*n arnﬁ armx arnxarnaf

(A1.8)

Since there is no direct coupling between the atoms k& and m or /, therefore we can
decouple expressions (A1.8) as

T, =~ <Z <32U"k>> m%ﬂ <aU"’Z o O U > (A1.9)

fn \ OFag A7 s 87 1y OF ny

Here it may be noted that coupling between # and / and between / and » is not weak as
it is direct.
Finally, the above expression can be written as

T, = - 9G,G,. (A1.10)

Again we use the same argument to obtain the remaining terms in equation (18).

Appendix 2, Five-particle contribution to £

Our expression for E, involves a five-particle sCF. The static pentuplet correlation
function has never appeared in any frequency sum rules so far and nothing is known
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about it. In the absence of any knowledge, we decouple its contribution in terms of the
static pair and triplet correlation functions. The exact expression for Eysis

kg T

Es = f]‘;ﬁ”“ ffjfdﬁ drydrydr, gs(ri, ry, rs, r) (U1 Uy Us g Usg

+ Uy UsgUss Usyg —2U, Us U3 Uy B3

+ Us U, Usap Usap @103 = 2U 1 Unsra Usgy Ung, 1 B3). (A2.1)
Here we define the static pentuplet correlation function as
ntgs(ri, ry, ry,ry) = > Oy —re+r,)o(r,—r+r,)o(rs—r,+r,)

jEkEIEmEn
X O(ry—ritr,)) (A2.2)

Here five arbitrary atoms are labelled j, &, /, m and n with the nth particle at the origin.
Using (A2.2) and (A1.3), the first term of equation (A2.1) can equivalently be written
as

0*U,, 0*Uy,
T= 2 <Unk Unl : > (A23)
kAt IEmtn A7 py T g OF iy O 8
Since the coupling between &, /, m and j atoms is not direct, we decouple (A2.3) as
a*U *U,
T= o "’> 4
2 wowa (557 (A2.4)

It should be noted that, after neglecting the coupling, only 5 = x contributes. Finally
the above expression can be written as

T = GiGj.

Following the above method, we obtain the remaining terms in equation (19).
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